
Problem and Users

sdmay25-23:
James Joseph
Samuel Lickteig
Alix Noble
Andrew Sand
Owen Sauser



Code Critiquer 
System for the C 
Language and 
Embedded C

Project Overview
● Current state of project (continuation of 

sdmay24-34) is a web-based critiquer 

tool

○ Students upload C files to tool

○ Files are statically analyzed to 

search for antipatterns

○ Tool generates feedback

○ Students use feedback to improve 

skills

● Will modify current system and/or 

develop new prototypes

● Ideally tailored for CPR E 288



Problem Statement
● Static Code Analysis is a challenging problem

● Many off-the-shelf solutions

○ Many leave a lot to be desired

○ They are not bespoke for CPR E 288 

usage

○ No off-the-shelf “perfect combination” for 

what the project client needs

● Client needs a code critiquer that can...

○ Be accessed by students and instructors

○ Provide beginner-oriented feedback

○ Ability to give embedded and 

datasheet-focused feedback

○ Potentially integrate with Code Composer 

Studio



Persona #1: 

Jimmy Dean 
(Confident CprE 
288 Student)

● Hears

○ “How did you do that?”

○ “Could you help me with ___?”

● Sees

○ Working Cybot

○ Understandable errors

○ Other students struggling/waiting for TA

● Says/does

○ Quickly resolves errors

● Thinks/feels

○ “This makes sense”

○ “If only the sensors were better”



Persona #2: 

John Doe 
(Struggling CprE 
288 Student)

● Hears

○ “What do the logs say?”

○ “Check the datasheet”

● Sees

○ Cybot not working

○ Other teams going faster

● Says/does

○ Why does this not work?

○ What register does that?

● Thinks/feels

○ Defeated

○ Lost



Persona #3: 

John Smith (CprE 
288 Professor)

● Hears

○ Student struggles

○ TAs complaining about answering the 

same/simple questions

● Sees

○ Students spending hours on an error

○ Students struggling to read the datasheet

● Says/Does

○ Clarifies common errors

○ Holds office hours

● Thinks/Feels

○ “I want students to succeed and learn”

○ The oddities of C are a pain point for 

beginners



● Feedback

○ Quick answers

○ Confidence in the response

○ Comprehensive

○ Understandable at a basic level

● Security

○ Students can’t cheat results

○ System won’t fail when running

● UI/UX

○ Intuitive/out of the way

○ Quick to use and interpret

User Needs



Conclusions 
from
Empathy Mapping

● Users need a reliable and quick method 

to get feedback on C code

● Feedback must help students learn the 

about the issue and not simply give them 

the answer

● Solution needs to be readily available for 

the users to reduce confusion and 

repeated questions



Any Questions, Suggestions, or 
Comments?


