
User Needs and Requirements

sdmay25-23:
James Joseph
Samuel Lickteig
Alix Noble
Andrew Sand
Owen Sauser

Code Critiquer System for the C Language and Embedded C



Code Critiquer 
System for the C 
Language and 
Embedded C

Project Overview
● Current state of project (continuation of 

sdmay24-34) is a web-based critiquer 

tool

○ Students upload C files to tool

○ Files are statically analyzed to 

search for antipatterns

○ Tool generates feedback

○ Students use feedback to improve 

skills

● Will modify current system and/or 

develop new prototypes

● Ideally tailored for CPR E 288

● Targeting a Spring Semester Prototype



Problem Statement
● Static Code Analysis is a challenging problem

● Many off-the-shelf solutions

○ Many leave a lot to be desired

○ They are not bespoke for CPR E 288 

usage

○ No off-the-shelf “perfect combination” for 

what the project client needs

● Client needs a code critiquer that can...

○ Be accessed by students and instructors

○ Provide beginner-oriented feedback

○ Ability to give embedded and 

datasheet-focused feedback

○ Potentially integrate with Code Composer 

Studio



● Feedback

○ Quick answers

○ Confidence in the response

○ Comprehensive

○ Understandable at a basic level

● Security

○ Students can’t cheat results

○ System won’t fail when running

● UI/UX

○ Intuitive/out of the way

○ Quick to use and interpret

User Needs



RequirementsFunctional

● Provide automated feedback based on the 

antipatterns in the database

● Allow professors to add and remove 

custom antipatterns to the database

● Allow students to submit code files for 

critiquing

● Add clarity to existing static C analysis 

tools

● Use simulated CyBots to analyze the 

results and function of the code



Requirements
Cont.

Resources

● Linux server for running the web 

application

● Server for running the CyBot simulation

● Git repository to hold code and run 

pipelines

UI/UX

● Clear and intuitive design

● Quick feedback

● Easy to navigate



Engineering 
Standards

(IEEE)

● IEEE 1028-2008 - Talks about reviewing code, and our 

first task of this project is to review the previous 

team’s code.

● IEEE 2675-2021 - Covers the concepts of reliably, 

securing, and safely building, packaging, and 

deploying applications in relation to DevOps. Since our 

project focuses on having both a frontend and 

backend, practicing efficient and safe DevOps will be 

critical to the group’s success. 

● IEEE 1016-1998 - Covers the recommended practices 

for Software Design Descriptors, which are a medium 

used for conveying the structure of a software system. 

It will be important to be able to effectively and 

concisely communicate how the senior design project 

is structured to the clients and advisor. 



● ISO/IEC 9899:2018 - Explains how C code is 
made to compile and run. This will be a useful 
resource to compare code against. Most code 
that goes against these patterns will include 
antipatterns

● ISO/IEC/IEEE 15288:2023 - Describes the 
terminology, concepts, and frameworks that 
deal with the lifecycle of a software system. It 
applies to bespoke and mass-produced 
systems, so it will be applicable to our project. 

● ISO/IEC TS 17961:2013 - Covers the rules for 
secure coding in the C language. Since our 
project heavily deals with identifying errors and 
antipatterns in C programs, this standard will 
be an excellent reference for a more 
memory-safe and cybersecurity standpoint. 

Engineering 
Standards Cont.

(ISO)



Conclusions 
from
User Needs and 
Requirements 
Definition

● The software solution involves many 

types of users

○ Need to ensure that each user group 

is satisfied

○ The implementation of functionality 

must be cohesive

● C is a programming language that can 

easily create security vulnerabilities if not 

careful

○ Team needs to pay close attention 

to Engineering Standards to ensure 

safety, security, and correctness



Any Questions, Suggestions, or 
Comments?


