
Project Planning

sdmay25-23:
James Joseph
Samuel Lickteig
Alix Noble
Andrew Sand
Owen Sauser

Code Critiquer System for the C Language and Embedded C



Code Critiquer 
System for the C 
Language and 
Embedded C

Project Overview
● Current state of project (continuation of 

sdmay24-34) is a web-based critiquer 

tool

○ Students upload C files to tool

○ Files are statically analyzed to 

search for antipatterns

○ Tool generates feedback

○ Students use feedback to improve 

skills

● Will modify current system and/or 

develop new prototypes

● Ideally tailored for CPR E 288

● Targeting a Spring Semester Prototype



Problem Statement
● Static Code Analysis is a challenging problem

● Many off-the-shelf solutions

○ Many leave a lot to be desired

○ They are not bespoke for CPR E 288 

usage

○ No off-the-shelf “perfect combination” for 

what the project client needs

● Client needs a code critiquer that can...

○ Be accessed by students and instructors

○ Provide beginner-oriented feedback

○ Ability to give embedded and 

datasheet-focused feedback

○ Potentially integrate with Code Composer 

Studio



Project 
Management Style

Hybrid

● Hybrid - Drawing Inspiration from both 
Agile and Waterfall
○ Overarching project is broken down 

into Waterfall-like tasks
○ Each task is handled in an Agile 

“Sprint” manner
● Agile Elements:

○ Weekly Team and Advisor Meetings
■ Share Progress
■ Plan next “Sprint” (Week)

● Waterfall Elements:
○ Large tasks must be completed 

before project can advance (See 
Task Decomposition)



Task Decomposition (High Level)

Incorporate 
User 

Feedback

Final 
Deliverable

Implement 
Dynamic 
Analysis

Update the 
UI

Get User 
Feedback 

from 
Prototype

Finish 
Prototype

Improve 
Static 

Analysis

User 
Requirements 

Gathering

Get Previous 
Project 
Running



Key Milestones, 
Metrics, and 
Evaluation Criteria

● Milestones

○ One antipattern per lab

○ Integration with Code Composer 

Studio

○ Integration with virtualized CyBot

● Metrics 

○ Survey: negative or positive impact

○ Query professor, students, and TAs

● Evaluation Criteria

○ Positive impact on code quality

○ Decrease in TA debugging

○ Marginal impact on added effort



Key Risks
● We must ensure this tool is used for 

learning and not for cheating

● It is designed to help the students 

understand their errors, but not designed 

to fix the errors for them

● Correctness: The program should not 

mislead students and negatively affect 

their understanding of the C programming 

language

○ Need to be aware of “false positives”



Risk Mitigation 
Strategies

● We must ensure that the instructor/TA 

accounts are secure so that unfair 

homework information can not be obtained 

or malicious activities be executed

● The output given to the students must be 

informative and correct while also 

remaining within the scope of the 

assignment and not giving the students the 

answers outright



Conclusions 
from
Project Planning 
Definition

● Most tasks are reliant on previous ones

● Impact is based on subjective metrics

● Feature development will start late due to 

an initial clean up and RE effort

● End product may evolve based on further 

findings during development

● More user research with a prototype will 

help focus development



Any Questions, Suggestions, or 
Comments?


