
Code Critiquer System for the
C Language and Embedded C

Design Document

Team sdmay25-23
Client: Dr. Diane Rover
Advisor: Dr. Diane Rover

Team Members:
James Joseph Secure System Design, CPR E 2880 Liaison
Samuel Lickteig Backend System Design
Alix Noble Testing
Andrew Sand Team Organization, CPR E 2880 Liaison
Owen Sauser Client Interaction, Frontend System Design,

CPR E 2880 Liaison

Team Website:
sdmay25-23.sd.ece.iastate.edu

Team Email:
sdmay25-23@iastate.edu

Revised:
7 Dec. 2024
Version 2.0



Executive Summary

Programming in C, especially in embedded contexts, can be a rather challenging
language for students and novice programmers to comprehend, resulting in a higher
barrier to entry and numerous struggles. For instance, compiler feedback can be
cryptic and deeply nested or confusing errors can arise that are formidable for
beginners to debug.

The Code Critiquer System for the C Language and Embedded C is a web
application and database that checks submitted C source files for antipatterns or other
poor programming practices, and it is a continuation of team sdmay24-34's project.
The project is targeting usage in the CPR E 2880 (Embedded System I: Introduction)
course at Iowa State University, where students will be able to upload their code for
critiquing, and teaching assistants and instructors will be able to create assignments,
select which antipatterns to test for, manage student user accounts, and view usage
statistics and telemetry. The project's overarching goal is to improve student learning
while reducing the workload on instructors and teaching assistants, resulting in a
significantly enhanced course experience.

The design must be easy to use by both students and staff, and the generated
feedback must be returned in a timely manner and understandable to beginner
programmers. Additionally, the project must be well documented and modular to
support further programming languages and Iowa State courses in the future. The
design's frontend web application is what users will interact with, allowing them to
upload files to check, view the generated feedback, and more. It is written in HTML and
CSS, with routing handled by the Flask framework, and Python code serves dynamic
data using templates. As for the project's backend, a database maintained using
MySQL stores all of the system's information. Additionally, a server sandboxes each
critiquer run using Docker. As this project is a continuation from team sdmay24-34's,
most of the core frontend and backend design is already implemented, but it requires
refinement and various improvements, such as a user interface overall, bug fixes, a
better account system, and statistics viewing before it is ready to be used in CPR E
2880. The team has made great strides in bringing it closer to a public release by fixing
bugs, beginning work on a statistics page, and sandboxing the critiquer runs using
Docker. With frequent contact with the team's advisor and client, Dr. Diane Rover, the
team ensures that the design stays focused on fulfilling the functional and
non-functional requirements. Looking toward the future, the team aims to improve the
system's aforementioned requirements before it can be used in CPR E 2880.

sdmay25-23 - Design Document 2



Learning Summary

Development Standards & Practices Used
● Software Practices

○ Version Control - Project uses GitLab to ensure all developers can
contribute simultaneously on different features

○ Continuous Integration and Continuous Deployment - Ensuring that the
published build is up to date and deployed

○ Testing - Running tests to ensure the system is stable and secure
● ABET Criteria

○ Applying principles of engineering, mathematics, and science
○ Identifying, formulating, and solving complex engineering problems
○ Communicate effectively with a wide range of audiences

● IEEE and ISO Engineering Standards (See section 2.2 for more details)

Summary of Requirements
● The critiquer must be easy and quick to use with a clean user interface
● The critiquer must catch antipatterns in C and in embedded contexts
● Generated feedback must be useful, concise, and aid the user in learning
● Usable in different contexts by students, teaching assistants, and CPR E 2880

instructors at Iowa State University
● Usage statistics must be aggregated and presented in ways useful to instructors

for improving the CPR E 2880 course

Applicable Courses from Iowa State University Curriculum
● COM S 1850: Introduction to the C programming language
● COM S 3090: Team project management and web application development
● COM S 3170: Understanding how software is tested
● COM S 3270: Deepening knowledge of C
● COM S 3630: Understanding and managing database systems
● CPR E 2880: Embedded Systems and the primary concern of this project

New Skills/Knowledge acquired that was not taught in courses
● Regular Expressions
● XPath
● Abstract Syntax Trees

sdmay25-23 - Design Document 3



Table of Contents

1.0 Introduction.................................................................................................................7
1.1. Problem Statement...............................................................................................7
1.2. Intended Users..................................................................................................... 7

2.0 Requirements, Constraints, And Standards............................................................... 9
2.1 Requirements & Constraints................................................................................. 9
2.2 Engineering Standards........................................................................................10

3.0 Project Plan...............................................................................................................11
3.1 Project Management/Tracking Procedures......................................................... 11
3.2 Task Decomposition............................................................................................11
3.3 Project Proposed Milestones, Metrics, and Evaluation Criteria.......................... 13
3.4 Project Timeline/Schedule.................................................................................. 13
3.5 Risks and Risk Management/Mitigation..............................................................14
3.6 Personnel Effort Requirements............................................................................15
3.7 Other Resources Requirements.......................................................................... 16

4.0 Design.......................................................................................................................17
4.1 Design Context................................................................................................................ 17

4.1.1 Broader Context..................................................................................................... 17

4.1.2 Prior Work/Solutions...............................................................................................18

4.1.3 Technical Complexity..............................................................................................19

4.2 Design Exploration.............................................................................................. 20
4.2.1 Design Decisions........................................................................................ 20
4.2.2 Ideation....................................................................................................... 21
4.2.3 Decision-Making and Trade-Off..................................................................21

4.3 Proposed Design.................................................................................................23
4.3.1 Overview..................................................................................................... 23
4.3.2 Detailed Design and Visual(s)..................................................................... 23
4.3.3 Functionality................................................................................................26
4.3.4 Areas of Concern and Development...........................................................27

4.4 Technology Considerations.................................................................................28
4.5 Design Analysis................................................................................................... 29

5.0 Testing...................................................................................................................... 30
5.1 Unit Testing......................................................................................................................30

5.2 Interface Testing.............................................................................................................. 30

5.3 Integration Testing........................................................................................................... 30

sdmay25-23 - Design Document 4



5.4 System Testing................................................................................................................ 30

5.5 Regression Testing.......................................................................................................... 31

5.6 Acceptance Testing......................................................................................................... 31

5.7 Security Testing............................................................................................................... 31

5.8 Results.............................................................................................................................32

6.0 Implementation.........................................................................................................33
7.0 Ethics and Professional Responsibility.....................................................................35

7.1 Areas of Professional Responsibility/Codes of Ethics.....................................................35

7.2 Four Principles................................................................................................................. 37

7.3 Virtues..............................................................................................................................38

8.0 Closing Material........................................................................................................42
8.1 Conclusion.......................................................................................................................42

8.2 References.......................................................................................................................42

8.3 Appendices......................................................................................................................43

8.3.1 A. Operations Manual............................................................................................. 43

8.3.2 B. Code...................................................................................................................44

9.0 Team......................................................................................................................... 45
9.1 Team Members................................................................................................................ 45

9.2 Required Skill Sets for the Project...................................................................................45

9.3 Skill Sets Covered by the Team.......................................................................................45

9.4 Project Management Style Adopted by the Team........................................................... 45

9.5 Initial Project Management Roles.................................................................................... 46

9.6 Team Contract................................................................................................................. 46

sdmay25-23 - Design Document 5



List of Figures and Definitions

Definitions:
Antipattern: A distinguishable error, bad practice, or flaw in written code. For example,
an antipattern can manifest as a syntax error, stylistic inconsistency, inefficient
structure, or compiler error.
Regular Expression: A series of characters used to identify and select patterns in a
plaintext file or input. It is used in this project to search for specific patterns in code to
perform static analysis.
XPath: An expression language primarily used to explore files of XML format. It is used
in this project to traverse and search the abstract syntax tree representations of code
to perform static analysis.

List of Figures:

Figure 1: Task Decomposition Chart.............................................................................. 11
Figure 2: Gantt Chart of Project Prototype Timeline.......................................................13
Figure 3: System Overview Sketch.................................................................................23
Figure 4: The Web Application’s Landing Page..............................................................24
Figure 5: Page Flow Diagram......................................................................................... 25
Figure 6: Database Table Diagram................................................................................. 26
Figure 7: A before and after comparison of the About page.......................................... 34

List of Tables:

Table 1: Estimated Personnel Effort Requirements........................................................ 15
Table 2: Broader Context Table...................................................................................... 17
Table 3: Area of Professional Responsibility/Codes of Ethics........................................ 35
Table 4: Four Principles Table......................................................................................... 37

sdmay25-23 - Design Document 6



1.0 Introduction
1.1. Problem Statement

The C programming language can be a rather tricky subject for students,
beginner programmers, and even experts to comprehend and learn successfully.
Compared to other programming languages, C can often be considered to have none
of the "training wheels" or safeguards common with the others. However, the language
is still widely used in several fields due to its efficiency and more nuanced control over
computer hardware. Therefore, C is still an essential topic for most computer and
software engineers. The overarching goal of this project is to reduce the barrier to entry
for the language in an academic context tailored explicitly for the CPR E 2880 course at
Iowa State University by improving upon the work done by team sdmay24-34. The
created software system will allow students to upload their code to be automatically
analyzed and have constructive, easily understood feedback generated. Furthermore,
instructors and teaching assistants will be able to view and collect analytics about what
students are submitting to the tool. This software solution will also aid in reducing the
workload on instructors and teaching assistants in addition to the response times to
answer student programming questions.

1.2. Intended Users
Since the Code Critiquer System for the C Language and Embedded C project

is targeting usage for Iowa State's CPR E 2880 course, three primary user groups have
been identified:

User Group #1: Students
Description: CPR E Students are usually rather busy with their other classes and work,
so they may not be available at the same times as the CPR E 2880 teaching assistants
or professors. The students typically have some knowledge of the C programming
language but need more in-depth or nuanced comprehension. They can frequently run
into errors that they need help understanding.
Needs Statement: CPR E students need a way to get fast and reliable feedback on
their work when teaching assistants or professors are unavailable.
Benefits: This product would allow the students to get feedback anytime and
anywhere. It would describe to them the issues they are encountering and how they
may fix or understand them. The feedback provided by the software solution will allow
students to learn what mistakes they are making, why they are considered bad
practice, and how to correct them.

sdmay25-23 - Design Document 7



User Group #2: Teaching Assistants
Description: Teaching assistants typically have a busy schedule, especially when
working in large, lab-based courses such as CPR E 2880. They usually have the
information a student may need to progress successfully but lack the ability to get to
and help all students promptly.
Needs Statement: CPR E 2880 teaching assistants need a way for students to
troubleshoot problems without their direct help.
Benefits: This product would give teaching assistants a lighter workload and allow
them to focus more on their classes, work, or research. Furthermore, this software
solution will significantly reduce the need for teaching assistants to answer trivial or
recurring questions, allowing them to focus on giving students more complex or
conceptual assistance.

User Group #3: Instructors
Description: Instructors design and create assignments and field questions from
students regarding these assignments. Though they have contact with students, it can
be challenging to gauge how their students are doing in class due to a lack of
one-on-one time with students and student feedback.
Needs Statement: Instructors need a way to compare many students' work against a
common set of issues.
Benefits: This product would reduce the number of questions instructors get from
students, freeing up more time, similar to the benefits teaching assistants will see. It
would also allow them to see what issues students have most often, allowing them to
tailor their curriculum to students' needs better.

sdmay25-23 - Design Document 8



2.0 Requirements, Constraints, And Standards

2.1 Requirements & Constraints

1. Functional
● Provide automated feedback based on the antipatterns in the database
● Compile and run C code
● Allow professors to add and remove custom antipatterns to the database
● Allow students to submit code files for critiquing
● Add clarity to existing static C analysis tools
● Use simulated CyBots to analyze the results and function of the code
● Allow instructors and teaching assistants to view analytics of student-analyzed

code per assignment per section
2. Resource

● Linux server for running the web application
○ 1 Core
○ 4GB Memory
○ 64GB Storage
○ Network interface card (NIC)
○ Public IP address with addressable port (Constraint)
○ Compatible with Python and program libraries (Constraint)
○ Compatible with libc (Constraint)

● Server for running the CyBot simulation (possibly the same as the
aforementioned)

○ Same as above
○ Same ISA and ABI of CyBot

● Git repository for project development (To hold code and run pipelines)
3. Aesthetic

● Clean and clear to make it easy to understand and receive the information
○ No overlapping text
○ Scales to multiple resolutions appropriately (Targeting only desktop

resolutions such as 1920x1080p, as mobile is not a prioritized platform)
○ Using a legible serif or sans-serif font that is at least 12pt in size

4. UI/UX
● Takes less than 10 seconds to analyze and return feedback
● Easy-to-click buttons

sdmay25-23 - Design Document 9



○ No stacking buttons on top of each other
○ Buttons give visual feedback when they are clicked
○ Can click anywhere on the button to register clicking it

5. Maintainability
● The application must be well documented so it can be maintained and

expanded upon after the team is done
● Instructors should be able to add, edit, and remove assignments in the system

to better fit the needs of CPR E 2880 for a particular semester
● Database of antipatterns should be easily updatable, allowing the tool to be

used for future applications

2.2 Engineering Standards

1. IEEE 1028-2008 - This standard relates to the project because it talks about
reviewing code. Reviewing code and work from other teams is a significant part
of this project, as the group needs to build off of what both the prior senior
design team and the Michigan Tech University.

2. IEEE 2675-2021 - This standard covers the concepts of reliably, securing, and
safely building, packaging, and deploying applications in relation to DevOps.
Since our project focuses on having both a frontend and backend, practicing
efficient and safe DevOps will be critical to the group’s success.

3. IEEE 1016-1998 - It covers the recommended practices for Software Design
Descriptors, which are a medium used for conveying the structure of a software
system. It will be important to be able to effectively and concisely communicate
how the senior design project is structured to the clients and advisor.

4. ISO/IEC 9899:2018 - Explains how C code is made to compile and run. This will
be a useful resource to compare code against. Most code that goes against
these patterns will include antipatterns

5. ISO/IEC/IEEE 15288:2023 - This standard describes the terminology, concepts,
and frameworks that deal with the lifecycle of a software system. It applies to
bespoke and mass-produced systems, so it will be applicable to our project.

6. ISO/IEC TS 17961:2013 - The rules for secure coding in the C language are
covered in this standard. Since our project heavily deals with identifying errors
and antipatterns in C programs, this standard will be an excellent reference for a
more memory-safe and cybersecurity standpoint.

sdmay25-23 - Design Document 10



3.0 Project Plan

3.1 Project Management/Tracking Procedures

This project will use a hybrid management approach, drawing inspiration from
both Agile and Waterfall. The overarching project is broken down into large
Waterfall-like tasks that must be completed sequentially. However, each of these tasks
will be worked on in an Agile manner with "sprints" taking place each week, consisting
of a team meeting, advisor meeting, and planning goals to be completed for the next
week. Furthermore, once a functioning prototype is completed by the second semester
of Iowa State University's academic year, there will be "sprints" in the sense that
functionality, feedback, and improvements will need to be worked on between each
CPR E 2880 lab. To aid in this development cycle, the team will use GitLab issues to
track the progress of features and manage Git progress. For communication between
team members, the project advisor, and members from the prior senior design group,
the team will continue to use Discord, as it allows for quick, efficient bursts of
communication that do not rely on availability.

3.2 Task Decomposition

Fig. 1 Task Decomposition Chart

sdmay25-23 - Design Document 11



1. Get the previous project running
a. Fix errors
b. Fix pipeline
c. Update strings for current team
d. Gain familiarity with Regex/XPath

2. Feature development
a. Dynamic analysis

i. Configure virtual bot
ii. Configure hooks
iii. Create goals
iv. Containerize

b. Static analysis
i. Antipatterns
ii. Explain compiler output
iii. Shareable antipatterns

c. UI update
i. Beautify
ii. Make better use of space
iii. More intuitive/descriptive user experience

3. Finish prototype
a. Add page for dynamic analysis
b. Combine data into a dashboard

4. Get student/professor feedback
a. Watch how students use the product
b. Interview users

5. Incorporate feedback
a. Add features
b. Modify user flow
c. Jump back to step 4

6. Final deliverable
a. Clean up UI
b. Finish testing

sdmay25-23 - Design Document 12



3.3 Project Proposed Milestones, Metrics, and Evaluation Criteria

1. The following functions of the previous project will work with zero critical errors
(Errors that prevent the program from continuing)

a. Create instructor account
b. Login as an instructor
c. Create an assignment as an instructor
d. Create antipatterns as an instructor
e. Upload unit tests as an instructor
f. Upload project as a student
g. Identify antipatterns in uploaded code based on antipatterns for the

assignment
h. Identify runtime and compile time errors based on tests uploaded for the

assignment
2. Code will run on the virtual CyBot without critical errors (Errors that prevent the

program from continuing)
3. Virtual CyBot results will be returned to and parsed by the program
4. Create at least one antipattern relevant to each CPR E 2880 lab
5. Increase user satisfaction of UI based on survey of select CPR E 2880 students

a. Have a user and professor satisfaction of over 80%
b. Determinant by polling of students and instructors

3.4 Project Timeline/Schedule

Fig. 2 Gantt Chart of Project Prototype Timeline

sdmay25-23 - Design Document 13



3.5 Risks and Risk Management/Mitigation

● Get previous project running
○ Risk: Previous senior design group’s project has errors running - 0.8

■ Reasoning: This web project is rather complex with multiple
interconnected parts that need to be configured in a rather specific
way.

■ Mitigation Strategy: Contact members from the prior group and
attempt to get assistance (The team is already in direct contact
with a prior member).

● User requirements gathering
○ Risk: Unable to contact and interview users - 0.1
○ Risk: User requirements gathering does not produce sufficient patterns to

focus development - 0.3
● Implement Dynamic Analysis

○ Risk: Team is unable to implement dynamic analysis - 0.5
■ Reasoning: Runtime analysis is an incredibly challenging topic that

has a lot of complicated research surrounding it.
■ Mitigation Strategy: Ask advisor if there is any professor at Iowa

State University that has expertise in dynamic analysis, reach out
to the researchers at Michigan Tech University who developed the
system this project is based on, potentially drop this requirement
(Worst-case scenario)

○ Risk: Dynamic analysis does not correctly identify errors - 0.4
● Improve Static Analysis

○ Risk: Static analysis does not correctly identify errors - 0.4
○ Risk: Static analysis seems a degradation of accuracy and precision - 0.1

● UI Update
○ Risk: UI Update worsens application appearance and usability - 0.2
○ Risk: Newly designed pages can not be integrated - 0.1
○ Risk: UI update decreases application accessibility - 0.1

● Finish Prototype
○ Risk: Prototype can not be deployed - 0.3
○ Risk: Prototype exhibits never-seen-before problems - 0.7

■ Reasoning: This project is rather complicated with several
interconnected pieces of functionality, so there is bound to be
issues that the team can not feasibly account for.

sdmay25-23 - Design Document 14



■ Mitigation Strategy: Prior to deploying a prototype, the team will
need to thoroughly do testing and stress tests. Furthermore, user
testing feedback will be extremely beneficial to identifying and
correcting erroneous problems.

3.6 Personnel Effort Requirements

Task Name Estimated Person-Hours Required

Get the previous project running 60 Hours

User requirements gathering 20 Hours

Dynamic analysis 80 Hours

Static analysis 120 Hours

UI update 60 Hours

Finish prototype 40 Hours

Get student/professor feedback Unknown

Incorporate feedback Unknown

Clean up deliverable 60 Hours

Total 440 hours + unknown

Table 1 Estimated Personnel Effort Requirements

Many of these estimates are rather rough. Knowing all the errors and problems
still left in the previous program is impossible. The team still needs access to the virtual
CyBot for dynamic analysis, so it is difficult to tell how complex the integration will be.
On the static analysis side, many members are presently getting up to speed with
regex and XPath. Based on what the previous team accomplished over the course of a
year, it will be challenging to gauge how long it will take to get lab-specific antipatterns
ready. As for the UI update, several team members have some experience developing a
UI on this scale. This time estimate is based on a few code jams and projects. Finishing
the prototype and cleaning up deliverables will focus on testing, and those times are

sdmay25-23 - Design Document 15



based on experience with COM S 3090 and other development classes that the team
members have taken. Additionally, the volume and complexity of implementing student
and professor feedback are impossible to estimate precisely. It will ultimately rely on
the experiences and amount of feedback given at that time.

3.7 Other Resources Requirements

Technical Cost:
● A server from Iowa State’s Electronics and Technology Group
● Energy Costs will be minimal
● Uses open-source software
● Iowa State University CyBot boards

Human Cost:
● Staff required to maintain system once completed

○ Either training teaching assistants or a specialist in the Iowa State
Electronics and Technology Group

● Whoever enters the antipatterns needs to be knowledgeable of regular
expressions

sdmay25-23 - Design Document 16



4.0 Design

4.1 Design Context

4.1.1 Broader Context

Area Description Effects of C Code Critiquer

Public health,
safety, and
welfare

How does your project affect the
general well-being of various
stakeholder groups? These groups
may be direct users or may be
indirectly affected (e.g., solution is
implemented in their communities)

Students will be able to get
feedback on their code at any
time of day, instead of just
when TA’s and Instructors are
available which could reduce
stress.

TA’s and Instructors are able to
get more feedback on common
student pitfalls.

Global,
cultural, and
social

How well does your project reflect
the values, practices, and aims of
the cultural groups it affects?
Groups may include but are not
limited to specific communities,
nations, professions, workplaces,
and ethnic cultures.

This product could be a
double-edged sword when it
comes to how it will affect the
profession of software
developers. Because on one
hand it can make it easier for
students to learn to code and
identify mistakes. But on the
other hand it could become a
crutch to those students,
making them overall worse
programmers.

Environmental What environmental impact might
your project have? This can include
indirect effects such as
deforestation or unsustainable
practices related to materials
manufacture or procurement.

The environmental impact
should only be the energy cost
of running the server. All the
other costs are negligible
because it uses hardware that
Iowa State already has access
to.

Economic What economic impact might your
project have? This can include the
financial viability of your product
within your team or company, cost
to consumers, or broader economic

There are no plans to monetize
this product. The technical
costs of running this after the
initial setup is just the energy
costs.

sdmay25-23 - Design Document 17



effects on communities, markets,
nations, and other groups.

The human cost is more
prevalent. After the product is
completed, it will need to be
maintained and it may need to
be updated if the course
changes enough. This would
require training an employee or
TA to do so.

Table 2 Broader Context Table

4.1.2 Prior Work/Solutions

As the team is continuing the work of a previous senior design team, we were
able to begin working through our design with a basic prototype at hand. The previous
team was in frequent contact with Michigan Technology University, who had made
several code critiques for other languages, which they used as an aid in their
development. References to each prior work or solution can be found in section 8.2.

Previous Team’s (sdmay24-34) C Code Critiquer [1]:
Advantages: Looking at a functional prototype has allowed us to get a good
understanding of how both regex and XPath are used in static analysis. It also
gave us a strong foundation to begin building new ideas/changes off of.

Shortcomings: Our team was unfamiliar with Python, which the critiquer is
coded in, at the start of the project. It has slowed us down in understanding the
code.

Michigan Technology University Critiquers [2]:
Advantages: Michigan Technology University has made multiple critiques for
several different languages, with functioning prototypes.

Shortcomings: As prototypes, they are not widely available for use. Also, the
critiquers only use static analysis.

We also spent some time looking into code critiquers currently on the market, and
found two to compare ours with.

sdmay25-23 - Design Document 18



PC-lint Plus [3]:
A commercial command-line tool that performs static analysis of C and C++,
indicating issues or concerns in the code.

CodePal [4]:
A platform that provides several helpers and tools to assist developers. When
looking into it, we mainly focused on the code review portion of the platform.

Pros of our code critiquer compared to others:
Designed to be used in CPR E2880, our critiquer will be tailored to the course
and embedded C programming as a whole. It will be reliable in finding the
specific antipatterns that the professor is looking for. The explanations provided
by the critiquer will be beginner friendly.

Cons of our code critiquer compared to others:
It requires more bespoke knowledge of its inner workings to maintain and a
deeper understanding of regular expressions to add more antipatterns to the
system.

4.1.3 Technical Complexity

The team's design will expand upon the previous team's (sdmay24-34) code
significantly. It is planned to add more antipatterns to the system based on what is
being covered in the CPR E 2880 labs and the most common issues encountered in
those assignments. This section of the project focuses substantially on leveraging
XPath and regular expression technologies to represent and find antipatterns.
Furthermore, the expanded analysis features will include the introduction of dynamic
analysis, which comes with unique engineering and mathematical challenges.
Uploaded code will be run through a virtualized CyBot system, simulating a lab runtime
environment, which is what the dynamic analysis portion of the critiquer will use to
generate additional feedback.

The team is also adding a feedback page that the instructors and teaching
assistants can use to see the most common antipatterns for each lab, among other
statistics. This new functionality, along with the desired user interface overhaul, will
require deep knowledge of frontend development, such as managing the router, writing
accessible HTML and CSS, and hooking in third-party libraries for displaying charts.

sdmay25-23 - Design Document 19



Overall, this project is rather technically complex, with frontend and backend
development skills requirements, static code analysis, dynamic code analysis, and
connecting with external software and hardware. Each design section has unique
challenges that must be overcome to ensure a successful outcome.

4.2 Design Exploration

4.2.1 Design Decisions

1. The first significant design decision we had to make was if we wanted to reuse
the previous team's code. Remaking it would allow us more flexibility and make
it so we can develop the program with methods or languages that we are more
familiar with. However, we decided against this, primarily because having a
mostly working baseline allows us to spend more time on the product-adjacent
tasks. Such as integration into other systems or further functionality, without us
having to spend time remaking the project's core.

2. Another decision we made was whether or not to include artificial intelligence in
some form in this project. This could consist of having a large language model
give answers about the 1,400-page long datasheet or having it train on the CPR
E 2880 course materials as a whole using something like
CourseGPT(https://arxiv.org/pdf/2407.18310). This is still being decided upon
between our group and the CPR E 288 professors based on what they want us
to include and what is feasible for us to accomplish in the allotted time.

3. Another design decision that we are still deciding upon is if we want to revise
how the assignments are handled. The way it is currently being handled is that
the instructor will make an assignment, and then they will have to share the
assignment code with their students. However, we have discussed changing it
so the instructor can make class sections and add each student. Then, the
students would log in to their accounts and be added to the proper section. This
is an important decision because the highest priority behind the product working
is having the product be something that the instructors would want to use. And
if it is too inconvenient to set up the assignments, they won't do it.

sdmay25-23 - Design Document 20

https://arxiv.org/pdf/2407.18310


4.2.2 Ideation

The decision to stick with the current code came with several potential options.
Our team as a whole had little experience in python (which the previous team used)
and jumping into a relatively complete project could be difficult.

Our first option was to stick with the previous team's work and spend some time
getting to know the code. Even if we are unfamiliar with python, it shouldn’t take long
to gain a decent understanding of it.

Our second option was to build a new project from scratch using C, the
language being critiqued by the system. This would theoretically make it easier to test
the code being uploaded by students.

Our third option was to build a new project from scratch using Java, the
language we were most familiar with. It wouldn’t be as easy to critique C code, but the
structure of the project would be more easy to build.

Our fourth option was to scrap the idea of a web application and spend our time
making a plugin for Code Composer Studio, the IDE being used by the CPR E 2880
lab. This would mean that the students could directly critique the code without
uploading it through a browser.

The final option we considered was making a plugin for Visual Studio Code, and
having the CPR E 2880 lab switch to using it instead of Code Composer Studio. This is
the most difficult option currently as it involves changing the lab structure.

4.2.3 Decision-Making and Trade-Off

We identified the pros and cons of the ideated approaches throughout a few
meetings by first making a list of the options. Everyone brought forth their opinion, and
we discussed which option would be easy to jump into, develop in a timely manner,
and produce satisfactory results. With our client, Dr. Rover, wanting to see a prototype
in the Iowa State Spring Semester, the option with the least risk came down to sticking
with the current code. Starting fresh with a different language would be challenging to
complete in time, considering we would both need to understand the project and
create it all in one semester. While both the Code Composer Studio option and the
Visual Studio Code option were appealing initially, they slowly lost favor after
discussions continued with Dr. Rover and Dr. Jones (the other professor teaching CPR
E 2880), and the project design continued being refined. Code Composer Studio is
undergoing an overhaul in December 2024, so it is still being determined what that
software will look like throughout development. Switching to Visual Studio Code would

sdmay25-23 - Design Document 21



create some risk, as it has yet to be used in the CPR E 2880 labs. As such, we have
decided to work on the current code and add to the previous team’s design, especially
as it seems like the natural evolution of this project. However, we may work some
aspects of the other options into the project in the future, depending on talks with our
client.

sdmay25-23 - Design Document 22



4.3 Proposed Design

4.3.1 Overview

Our current design is a program that will be run on a server. Students and
instructors will be able to access this server via a website. Instructors will be able to
upload a list of student Net-IDs for student account creation, create assignments for
the students, with specified parameters and patterns it wants to look out for. Students
will receive an email once their account has been created with a generated password
for them to login. Once logged in, students will be able to click on an assignment and
upload code. The program will then search the students’ code for any anti-patterns or
other ineffective coding practices in their code and give them feedback on it. The
server will store this feedback so the instructor will be able to look at the data later.

Fig. 3 System Overview Sketch

4.3.2 Detailed Design and Visual(s)

The project’s design is a comprehensive web application that has a frontend
system of web pages that users will access to communicate with the backend
database server that stores account, assignment, and analysis information.

sdmay25-23 - Design Document 23



Additionally, there is also a critiquer server that is used to sandbox and analyze
uploaded student code.

Fig. 4 The Web Application’s Landing Page

Frontend Graphical User Interface:
The frontend web application graphical user interface is built using HTML, CSS,

JavaScript, Templates (driven by Python code), and Flask so that multiple users can
access it simultaneously and be able to navigate pages with the correct information as
expected. The frontend GUI receives and displays the feedback from the critiquer
server after a student submits code to be analyzed.

sdmay25-23 - Design Document 24



Fig. 5 Page Flow Diagram

Above is a diagram of the page flow through the GUI, as experienced by a user.
It depicts how each page in the system is connected and how it can be accessed.
Additionally, the design will incorporate pages for assignment analytics and managing
accounts. The routing of pages in the web application is handled through Flask.

Backend Database:
The backend server stores all of the information regarding the operations of the

system and it will be hosted in a single location, serving each of the users connecting
using the frontend web application. The database facilitates the logging in and
registering of users while also storing necessary data for operation, such as
antipatterns and analysis feedback. Students will be able to submit their code using
the frontend GUI to the database, which will then be sent to the critiquer server for
running. The database will then receive feedback information from the critiquer once
the tests have finished running. It will be maintained using MySQL with the following
tables to store the information.

sdmay25-23 - Design Document 25



Fig. 6 Database Table Diagram

Furthermore, additional tables and data will be added to represent student and teaching
assistant accounts, course sections, and assignment analytics.

Critiquer Server:
Additionally, there is a critiquer server in the project that houses the sandbox and

C critiquer written in Python that is used for testing uploaded student code, generating
feedback based on analysis, and getting antipatterns for testing from the database. This
critiquer will be expanded upon to implement dynamic analysis using a virtualized CyBot
system. The virtualized CyBot is a program maintained by Iowa State's Electronics and
Technology Group that uses code combined with CyBot boards used in the CPR E 2880
course. The critiquer system will optionally (as determined by the user) run dynamic
analysis testing by sending the uploaded C code files to the virtualized CyBot, which
then runs it on its testing boards. The virtualized system will then send feedback to the
critiquer, which it will parse, generate feedback, and display to the user.

4.3.3 Functionality

sdmay25-23 - Design Document 26



The project's design has three user groups in mind, each of which will interact with the
system in slightly different ways.

1) CPR E 2880 Students
In the system, the CPR E 2880 student user group will be able to create an

account, log into the web application, select a specific assignment, and submit code to
be analyzed . Once submitted to the system by a student user, their code will be
analyzed and feedback generated, which the student can then use to learn and
improve their programming skills.

2) CPR E 2880 Professors
The CPR E 2880 professor user group will be able to sign up for an account on

the system's web application, and from there, they will be able to set up user accounts
for teaching assistants, create, edit, or delete assignments, view an access code for
each created assignment, assign students to various sections, edit or add antipatterns
to test for, and view analytics from student submissions. Each of these pages will be
hosted through the web application, but all of the user, assignment, and class
information will be hosted on the backend server. Additionally, instructors can view
statistics and telemetry about students' critiquer submissions at either an assignment
or global level. There will be a unique page within the teacher login section to reach this
functionality, and it will be exclusive to instructor accounts. The statistics will be
presented numerically and visually through bar charts, which can be downloaded for
external applications or usages. This data will aid instructors in determining problem
areas for students, allowing them to focus on concepts prone to causing struggles,
improving the CPR E 2880 class overall.

3) CPR E 2880 Teaching Assistants
The teaching assistants interacting with the system will utilize it in a similar way

to the professors. The teaching assistants will be able to log into the web application
using an account provided to them by a professor, and they will also be able to view
student analytics and edit assignments. However, they will not be able to create or
delete assignments or edit student account assignments.

4.3.4 Areas of Concern and Development

sdmay25-23 - Design Document 27



Once everything is implemented, the design will satisfy the project requirements
and user needs. As the tool is used, test runs are executed, and a more detailed user
feedback period is completed, the team will have a greater understanding of what
users are specifically looking for and would like changed with the design. First and
foremost, the design should allow students to receive feedback on their code that will
enable them to learn and grow as programmers while also giving instructors the
resources and data to improve the CPR E 2880 course, and the design currently meets
that ideal. Specifics and preferences will evolve and change as the project develops
and more user feedback is received, but the design will be adapted to best fulfill and
meet the user's needs.

4.4 Technology Considerations

For the most part, the team continues to build off the designs and technological
considerations of the prior senior design group, sdmay23-34. This stance means that in
the current design stage, the frontend web application is made using HTML, CSS, and
JavaScript with Flask as a routing solution, and the backend server is maintained using
MySQL. Additionally, the critiquer system itself is built using the ones designed at
Michigan Tech University as a starting point, but it is using Python instead of the
language it is analyzing, which is C in this case.

While the team has discussed moving toward more sophisticated solutions,
such as a frontend framework, the primary goal of the design currently is to build off
the prior work and create a working prototype. Additionally, there were concerns about
working on the Python critiquer since many of the team members had little to no
experience with the language. However, translating it to a different technology was
ultimately decided against since it would require rewriting the system while using
precious time. Additionally, since Python is one of the easier to learn languages for
programmers, the team members can pick it up quickly while also learning a sought
after skill.

sdmay25-23 - Design Document 28



4.5 Design Analysis

Presently, the team has gotten the system designed by the previous senior
design team, sdmay24-34, running locally and has fixed several issues with the
codebase to get it operational and stable. Team members have also begun
implementing and experimenting with the newly designed functionality, such as
allowing instructors to view analytics about the assignments and common problems
that students are encountering. Currently, the project is not in a place where testing a
user experience or judging design decisions would be beneficial, but the development
timeline is on schedule. Looking toward the future, the team will continue to work on
and implement the functionality of different design aspects not found in the prior senior
design group's project, with student logins, improved file uploading, and dynamic
analysis as a few examples. With the current state of the project's development, there
are no identified feasibility issues with the design, but the team will continuously be
investigating the feasibility and potential pitfalls throughout the task's growth.

sdmay25-23 - Design Document 29



5.0 Testing

5.1 Unit Testing

For automated unit testing, two main components need to be checked:
regex/XPath antipatterns and unit tests for dynamic testing. For the regex/XPath
antipatterns, multiple files will be uploaded, and the resulting found antipatterns will be
checked against the expected list. Dynamic testing will use previous students lab
solutions, after professor review, to check that all tests pass correctly. After that,
modifications will be made to the lab to check that each test fails individually, and a
random combination of tests will be checked to assure that they fail in the correct
order. Of note, an error such as two mains will cause the program not to compile, so
runtime errors will not be checked.

5.2 Interface Testing

As mentioned above, site flow will be manually tested to ensure correctness.
Furthermore, the user interface will also be compared against common internet
standards for accessibility and usability, ensuring that our project can be used by a
wide audience conveniently.

5.3 Integration Testing

Example files will be sent through the API on the website to make sure that both
the static and dynamic analysis portions are functioning properly. For static analysis, it
will check that it only gives results for enabled and triggered antipatterns. Tests
regarding dynamic analysis will make sure that the docker container is run properly, the
makefile compiles properly, and results get parsed and passed back to the website.

5.4 System Testing

For the system test, the following steps will be taken:
1. Create a new professor
2. Login as the professor

a. Incorrect password fails
b. Incorrect email fails
c. Correct password succeeds

sdmay25-23 - Design Document 30



3. Create a new antipattern
4. Create a new assignment
5. Select specific antipatterns for the new assignment
6. Upload a unit test for the new assignment
7. Upload example code to the new assignment

a. Bad file format fails gracefully
b. Correct antipatterns are checked (including the new one)
c. Correct tests pass and fail

5.5 Regression Testing

To ensure that features don't regress, a pipeline will be run whenever code is
merged into the main branch. This pipeline will fail if any of the aforementioned tests
fail. This process happens in the project’s GitLab repository, ensuring that any code a
team member pushes is tested this way.

5.6 Acceptance Testing

For acceptance testing, the team is in close and frequent communication with
the project advisor/client and other faculty or teaching assistants closely related to the
CPR E 2880 course. The team meets weekly with Dr. Diane Rover, the project advisor
and one of the instructors for CPR E 2880, to discuss the design and its effectiveness,
allowing for continuous evaluation, testing, and feasibility assessment. Furthermore, in
the coming Iowa State Spring Semester, a prototype of the critiquer system will be
used as an optional resource, allowing students to test the design first-hand, provide
feedback, and generate usage telemetry, which will be invaluable for reflecting on and
refining the design. Continuous communication with CPR E 2880 teaching assistants,
instructors, and students while also supplying a prototype for feedback will allow the
team to test the design's acceptance rigorously, ensuring that the functional and
non-functional requirements are being fulfilled satisfactorily.

5.7 Security Testing

Since user data is being stored for this project, security is an utmost concern.
First, SQL queries are being sanitised to ensure that injection can not be possible. Pip
will be used to scan for out-of-date and vulnerable libraries. Nmap and burpsuite will
scan for simple web exploits. Aside from that baseline testing, cybersecurity students

sdmay25-23 - Design Document 31



and professionals will have a chance to review and analyse the project for
vulnerabilities. This process will happen after every major version update.

5.8 Results

Certain previous testing is currently on hold as the primary server is inaccessible
and an overhaul of site flow is underway. As the next major version comes out and
testing gets updated, this section will be populated. Regardless, testing is still a critical
part of the team’s software development process, as it provides validation and
verification of the system and the design.

sdmay25-23 - Design Document 32



6.0 Implementation

Thus far, the team has made decent progress toward getting an Iowa State
Spring Semester prototype completed by laying the foundations for several features
that will be implemented. Additionally, as this is a continuation of team sdmay23-34's
project, a good part of this project's first phase was getting oriented with their work
and applying some bug fixes to ensure it runs properly and in a stable environment.
Most of the work completed during this first half was research, familiarization, and
planning, but a few tangible things were implemented to showcase.

A Docker container has been set up and implemented into the system. This
implementation allows each test run of the code to be sandboxed into a predetermined
and identical environment, reducing the possibility of erroneous occurrences or errors.
Perceptually, there is no change from the user's view as this is exclusively a backend
and non-visual improvement to the project.

Instructors are now able to upload files containing lists of student Net-IDs which
will then automatically be turned into accounts for students to use for login. A student
home page has been created that lists all assignments their professor has created with
redirects to the code upload pages, but the page is still a work in progress in terms of
UI design and functionality. Also, the students currently have a password automatically
generated for them but we haven’t set up the automatic sending of those passwords to
students.

There has also been some work on updating information on the web application
to align more with the project's current state and its developers. This alteration can be
seen in Fig. 7 below with a comparison of how the About page has changed.

sdmay25-23 - Design Document 33



Fig. 7 A before and after comparison of the About page

Furthermore, work was begun on the instructor statistics and telemetry page
with some testing of a third-party library to display a bar chart with data, but there is,
unfortunately, nothing to show presently.

sdmay25-23 - Design Document 34



7.0 Ethics and Professional Responsibility

7.1 Areas of Professional Responsibility/Codes of Ethics

Area of
Responsibility

Definition Related NSPE
Code of Ethics

How Our Team
Interacts with this
Area of
Responsibility

Work Competence Completing your
work with a
professional level of
competency and
timeliness.

II.2.a: Engineers
shall undertake
assignments only
when qualified by
education or
experience in the
specific technical
fields involved.

When we make a
feature we try to
make sure it is
thoroughly tested
before pushing it to
main.

Financial
Responsibility

Being
conscientious
about the costs
required to not just
launch but maintain
the project.

II.4.c: Engineers
shall not solicit or
accept financial or
other valuable
consideration,
directly or
indirectly, from
outside agents in
connection with the
work for which they
are responsible.

We are keeping the
costs in mind while
developing. While
the upfront costs
might be low, the
cost to maintain
and expand upon
the project in the
future might add
up.

Communication
Honesty

Being realistic
about the
capabilities of the
team and the
product to the
stakeholders/users.

III.3: Engineers
shall avoid all
conduct or practice
that deceives the
public.

We are staying
honest with our
client about our
progress and
regularly sending
them progress
reports.

Health, Safety,
Well-Being

To put the
wellbeing of
mankind above
every other aspect

III.2.a: Engineers
are encouraged to
participate in civic
affairs; career

We plan to have the
project to make the
website compatible
with text readers

sdmay25-23 - Design Document 35



of the product or
project.

guidance for
youths; and work
for the
advancement of
the safety, health,
and well-being of
their community.

for the visually
impaired.

Property
Ownership

Handling
user-provided
materials and
information with
due care and
respect.

I.4: Act for each
employer or client
as faithful agents or
trustees.

We are handling
user data with care.
Making sure that
the TA and
instructor accounts
are secure to make
sure students can't
cheat.

Sustainability Being
conscientious of
the impact the
project can have on
the environment,
both directly and
indirectly.

III.2.d: Engineers
are encouraged to
adhere to the
principles of
sustainable
development in
order to protect the
environment for
future generations.

The only thing for
sustainability we
have to account for
is the energy cost
of the server
because all the
hardware we use is
stuff that ISU
already has.

Social
Responsibility

Making sure that
the product is a net
good for society
without negatively
impacting some.

II.1.e: Engineers
shall not aid or abet
the unlawful
practice of
engineering by a
person or firm.

We want to make
sure that students
are using the
product as a tool to
supplement
learning instead of
something to
replace their
learning.

Table 3 Area of Professional Responsibility/Codes of Ethics

Overall, the team is performing well in the property ownership category,
especially given the number of parties involved with the project. Since the critiquer will
need access to CPR E 2880 lab answers, the team is ensuring that only the appropriate
people have access to those materials, as it could be damaging if they were publicly

sdmay25-23 - Design Document 36



released. Furthermore, CyBot-specific information is also carefully handled by keeping
it contained within the scope of the critiquer and virtualized CyBot environment. The
team communicates frequently with and receives feedback from the project client,
ensuring that it is known which information is considered sensitive. The principle of
least privilege and access is heavily utilized to ensure that only the correct users have
access to only the subset of information that they need.

The area of professional responsibility that our team could improve on is work
competence. Due to some unforeseen issues with the previous team’s code we started
to fall behind on our deadlines. And once we fell behind the deadlines we never
adjusted them to account for this, so we fell even further behind. In the future we will
be talking about our progress and how we are keeping up with the deadlines and
adjusting them accordingly.

7.2 Four Principles

Beneficence Nonmaleficen-
ce

Respect for
Autonomy

Justice

Public health,
safety, and
welfare

Helps improve
stress levels of
students and
TAs

Aim to reduce
student
reliance on
critiquer

Allow students
to use as
much as
needed

Provides a
resource for
busy students

Global,
cultural, and
social

Addresses the
needs of
instructors
and TAs

Available for
all students

Respects
cultural
practices

All user types
benefit from
implementatio
n

Environmental Design uses
existing
hardware and
will receive
energy from
ISU

Design
doesn’t
require more
manufacturing

Will provide
user choice
between just
static analysis
or both static
and dynamic
(uses boards)

Allow students
off campus to
access CyBot
without
producing
more

Economic Design is free
for students

Design would
not be

Will allow
users to use

Free resource
for people

sdmay25-23 - Design Document 37



disruptive only static
analysis if they
do not have
access to a
server with
boards

who can't
attend office
hours

Table 4 Four Principles Table

One broader context-principle pair that is important to our project is public
health, safety, and welfare paired with beneficence. A main goal of the critiquer is to
provide timely feedback to students. This ties directly to improving stress levels as both
students and TAs will need to spend less time going over basic code issues that could
be solved without the process of office hours or a simple hand raise.

A broader context-principle pair that our project is lacking a little in is
economics. While our design has a minimal cost impact, it is rather difficult to measure
or predict, given that it is highly dependent on Iowa State University resources. To
better accommodate for this, the team will need to investigate maintenance costs more
closely from different perspectives, such as how the Electronics and Technologies
Group at Iowa State handles maintaining proprietary software and what they protocols
for that are.

7.3 Virtues

Three virtues that are important to our team are:
● Cooperativeness: a willingness and ability to work with others

○ Cooperativeness is very important in making sure our team can make
progress on the project without getting in each other's way. We will
communicate frequently and make it clear what we are currently working
on so as to not create confusion.

● Clear and thorough documentation: detailed documentation that avoids
unnecessary complexity and covers all aspects of the project.

○ We will document the changes we have made to the previous team’s
work and provide clear instructions on how to use the critiquer.

● Honesty: being truthful and communicating openly
○ As a team of individuals with our own ideas and opinions, we will

continue to openly express them. If someone disagrees with a decision

sdmay25-23 - Design Document 38



an individual has made, they will bring their thoughts forth, not simply sit
back and accept the decision without any discourse.

Individual Reflections:
● James Joseph

○ One important virtue that I feel I've demonstrated best is communication.
With our team, I feel like I've been able to express my ideas and thoughts
around the direction of the project, and I've been able to listen to other
people's thoughts about direction. While the more cooperative nature of
our communication has led to more overhead, I believe that it has been
worth it to bring out the best idea of what the project should be

○ The most important virtue to me is work competence. I feel that projects
are nothing without a good result. My biggest effort will be towards
making the product functional and worth the user's time. Even with this, I
have felt that my performance this semester has been a little lackluster as
I've waffled too much with the direction and task breakdowns to tackle.
Coming into the next semester, I will lay out a more definitive direction
and focus on developing and completing a backlog.

● Samuel Lickteig
○ A virtue I feel I have demonstrated thus far is responsiveness.

Responding quickly to team members helps their work flow more
smoothly. I try my best to respond to the Discord as quickly as possible
so as to not potentially delay their work.

○ A virtue I need to work on is decisiveness. It is important to me because
there are many small decisions that need to be made when working on a
large project like this. Spending too much time questioning my own
thoughts results in me putting more time than necessary into what should
be small decisions. I will try to demonstrate this by having a more
structured means of comparing options that results in a quicker
resolution.

● Alix Noble
○ A virtue I feel I have demonstrated well is civic-mindedness. Always

keeping the end users and our clients in mind is important to the project's
success, as they will ultimately be the ones who use the system. I feel like
I always keep in mind how decisions will impact the user experience.
Whenever I am making a decision about something in the project, I am
cognizant of how that will ripple into the usability and social usage of the

sdmay25-23 - Design Document 39



tool.
○ A virtue I want to demonstrate more of is clear and thorough

documentation. A lot of the project is lacking documentation or code
comments about how different parts of it work. Demonstrating this virtue
more by writing documentation about the things I work on and
commenting code will go a long way toward our goal of modularity and
ease of maintenance.

● Andrew Sand
○ A virtue I feel I have demonstrated in my work throughout the project thus

far is honesty. I do my best to be as honest as possible when
communicating with others and doing work for this project, as it ensures
that everyone is in agreement regarding a topic, concept, or idea. I am
never intentionally dishonest about information or work that needs to be
communicated. Honesty is extremely important for this project due to the
number of parties involved with its creation and who will eventually use
the finished version of it in the future. It is critical to be honest and truthful
with what the project can and can not do, and each party needs to trust
each other for this to be successful.

○ A virtue I wish to work on in the upcoming second half of this project's
development is my willingness for self-sacrifice. Throughout the project's
first phase, I was not particularly happy with the amount of time I
dedicated to working on it, and I feel that there needs to be more on my
end to match the other member's progress. There must be a delicate
balance of willingness for self-sacrifice on the project, not too much but
not too little. In the future, I wish to dedicate more of my time toward
working on the project to not let the team down and ensure that I am
putting in my fair amount of effort to complete the project.

● Owen Sauser
○ The virtue that I have demonstrated is the virtue of commitment to the

public good. I have always made preventing cheating with our product a
priority. Doing things like suggesting a way to disable the tool during
exams or logging the submissions. Then also we want the students to use
our product to supplement their learning, not to replace it.

○ The virtue that is important to me that I have not fully demonstrated thus
far is timeliness. This is because I had trouble keeping up with the
deadlines we had set. While some of this is due to factors I am not able to
control, there were other times when it was definitely a lack of motivation

sdmay25-23 - Design Document 40



on my part. And in the upcoming semester I will be working to prevent
this in the future by setting aside more time for the project

sdmay25-23 - Design Document 41



8.0 Closing Material

8.1 Conclusion

For the start of the project, the team's primary goals have been to get
familiarized with the work accomplished by the prior group (sdmay24-34), research the
technologies and concepts involved, determine a list of features and improvements to
implement and begin preparing for a prototype for the Iowa State Spring Semester. The
team has successfully obtained these goals to a satisfactory degree. In total, bug fixes
have been implemented, plans have been laid for full development to begin in the
coming months, each member has a much better understanding of the topics involved,
a Docker container has been set up for sandboxed execution, a statistics page is in
development, and the project is well on its way to being in a suitable shape for trial
runs early 2025. A big part of the team's success thus far has been constant
communication between members but also with the project advisor, and other third
parties related to the CPR E 2880 Iowa State course. Moving into the project's next
phase, the team aims to overhaul the user interface, implement working dynamic
analysis, finish the statistics page, implement a better account system, and set up
more robust antipatterns that can be used with CPR E 2880 labs.

8.2 References

[1] Code Critiquer System for the C Language. [Online]. Ames, IA: Iowa State
University, 2024. Available: https://sdmay24-34.sd.ece.iastate.edu/.

[2] Albrant, L., Pendse, P., Dasker, D., Brown, L., Sticklen, J., Jarvie-Eggart, M. E., &
Ureel, L. C. (2024). Work-in-Progress: Python Code Critiquer, a Machine
Learning Approach. Proceedings - Frontiers in Education Conference, FIE.
http://doi.org/10.1109/FIE58773.2023.10343017.

[3] PC-lint Plus 2.2. [Online]. Stuttgart, Germany: Vector Informatik GmbH, 2024.
Available: https://pclintplus.com/.

[4] CodePal C Code Reviewer. [Online]. Nigeria: CodePal, 2024. Available:
https://codepal.ai/code-reviewer/c.

[5] Ureel, L. C., Brown, L., Sticklen, J., Jarvie-Eggart, M. E., and Benjamin, M.,
"Work in Progress: The RICA Project: Rich, Immediate Critique of Antipatterns in
Student Code," in Proceedings of the 6th Educational Data Mining in Computer
Science Education (CSEDM), 2022, 75-81.
http://doi.org/10.5281/zenodo.6983498.

sdmay25-23 - Design Document 42



[6] Ureel, L. C., and Wallace, C., "Automated Critique of Early Programming
Antipatterns," in SIGCSE '19: Proceedings of the 50th ACM Technical
Symposium on Computer Science Education, 2022, 738-744.
http://doi.org/10.1145/3287324.3287463.

8.3 Appendices

8.3.1 A. Operations Manual

Create .env File

1. Open a python shell
2. Run import secrets and secrets.token_hex()
3. Create a .env file in the root directory of the project
4. Enter the following into the file:

ENVIRONMENT="qa"
FLASK_SECRET_KEY=[secrets.token_hex() result here]
FLASK_DATABASE=sqlite

How to Run

1. Create .env file if you haven't already
2. Open terminal in project directory
3. Install the requirements: python -m pip install -r requirements.txt

a. Update path variable for libclang library within venv/clang/cidinex.py
b. Update class variable library_path of Config to library_path =

os.path.join(os.path.dirname(os.path.realpath(__file__)), 'native')
4. Initialize the database: python -m flask --app . init-db
5. Install Docker

a. Windows: Install Docker Desktop and make sure it is running while the
code runs

b. Linux: Install docker with your package manager (Eg. sudo apt install
docker)

6. Start the application: python -m flask --app . run --port 8000 --debug

sdmay25-23 - Design Document 43



7. Open localhost:8000 in your browser

Accessing the database in the code

1. Import database: from database import get_db
2. Example for fetching data:

db = get_db()
results = db.execute(
"SELECT long_desc, short_desc FROM pattern"

).fetchall()
print(results[0]['long_desc'])

3. Example for changing the database:

db = get_db()
db.execute(
"INSERT INTO pattern (long_desc, short_desc) VALUES (?, ?)",
("long description", "short description"),

)
db.commit()

8.3.2 B. Code

All code for the project can be found in the team’s GitLab repository:
https://git.ece.iastate.edu/sd/sdmay25-23

sdmay25-23 - Design Document 44

https://git.ece.iastate.edu/sd/sdmay25-23


9.0 Team

9.1 Team Members

● James Joseph
● Samuel Lickteig
● Alix Noble
● Andrew Sand
● Owen Sauser

9.2 Required Skill Sets for the Project

● Knowledge of the C programming language - Required for CPR E 2880
● Knowledge of embedded programming - Required for CPR E 2880
● Frontend Web Development - Required for the frontend web application
● Backend Database Development - Required for the backend database and

critiquer
● Data Security and Best Storage Methods - Required for storing user data in an

appropriate way
● Knowledge of different representations of code - Required for finding

antipatterns in code
● Antipattern checking mechanisms - Required for finding antipatterns in code

9.3 Skill Sets Covered by the Team

● Knowledge of the C programming language - Andrew, Owen, Samuel
● Knowledge of embedded programming - James, Owen, Samuel
● Frontend Web Development - Alix, Andrew, Samuel
● Backend Database Development - Alix, Samuel
● Data Security and Best Storage Methods - James, Owen
● Knowledge of different representations of code - James, Owen
● Antipattern checking mechanisms - Andrew, James, Samuel

9.4 Project Management Style Adopted by the Team

The team adopted a hybrid management style between Waterfall and Agile for
this project, fitting the specific project, team, and work schedule. The overarching

sdmay25-23 - Design Document 45



project is split into Waterfall-like tasks, each needing to be completed before the next,
but these tasks are worked on in an Agile-like sprint. Weekly, the team meets to share
progress, discuss the project's direction, and plan for the next "Sprint" (week). The
team's hybrid approach also draws inspiration from Waterfall's larger tasks that must
be sequentially completed before the next can be worked on, as seen in the project's
task decomposition chart (See Fig. 1). This combination of the two project
management styles has served the team well, striking a balance between
responsiveness and a structured work order that suits this project.

9.5 Initial Project Management Roles

● James Joseph - Secure System Design, CPR E 2880 Liaison
● Samuel Lickteig - Backend System Design
● Alix Noble - Testing
● Andrew Sand - Team Organization, CPR E 2880 Liaison
● Owen Sauser - Client Interaction, Frontend System Design, CPR E 2880 Liaison

9.6 Team Contract

Team Members:
1) _James Joseph__________________ 2) _Samuel Lickteig_________________
3) _Alix Noble______________________ 4) _Andrew Sand___________________
5) _Owen Sauser___________________ 6) _______________________________
7) _______________________________ 8) _______________________________

Team Procedures

1. Day, time, and location (face-to-face or virtual) for regular team meetings:
Monday 2:00–3:00 PM, virtual through Discord

2. Preferred method of communication updates, reminders, issues, and scheduling
(e.g., e-mail, phone, app, face-to-face):

a. Discord group chat for member-member communication in addition to
updates, reminders, scheduling, etc.

b. Email for member-advisor communication
3. Decision-making policy (e.g., consensus, majority vote):

Three or more members must be in complete agreement with the
decision before moving forward.

sdmay25-23 - Design Document 46



4. Procedures for record keeping (i.e., who will keep meeting minutes, how will
minutes be shared/archived):

In our Google Drive, which is shared with all group members, there will be
a folder that contains summaries of each meeting. This archive will
always be available to all members. At least one member present should
contribute to the summary. The contributing members will vary based on
meeting attendance.

Participation Expectations

1. Expected individual attendance, punctuality, and participation at all team
meetings:

a. Inability to participate in a meeting or tardiness of more than 15 minutes
must be communicated at least an hour before the meeting’s scheduled
start time.

b. Members are expected to attend and participate in all advisor meetings
unless communicated beforehand.

c. Members are expected to attend and participate in all weekly meetings
unless communicated beforehand.

d. Additional meetings and their expectations will be discussed on a
case-by-case basis.

2. Expected level of responsibility for fulfilling team assignments, timelines, and
deadlines:

Each team member is responsible for setting and meeting deadlines on
the tasks they are responsible for. If a task requires or relies on multiple
team members, a discussion will be held to determine an appropriate
timeline for each party where the parties will be responsible for their given
assignment and deadline.

3. Expected level of communication with other team members:
Every member of the team must give weekly progress reports that include
what was accomplished along with what there is still to do. Any tasks
blocking theirs must be communicated immediately in the appropriate
communication channel.

4. Expected level of commitment to team decisions and tasks:
Each team member is expected to be able to complete their tasks in a
reasonable amount of time. If they need more time they should

sdmay25-23 - Design Document 47



communicate what issues they are experiencing with the rest of the team
so we can work together to remedy the situation.

Leadership

1. Leadership roles for each team member:
a. James Joseph: Secure System Design
b. Samuel Lickteig: Backend System Design
c. Alix Noble: Testing
d. Andrew Sand: Team Organization
e. Owen Sauser: Client Interaction, Frontend System Design

2. Strategies for supporting and guiding the work of all team members:
As stated in participation expectations, team meetings will include
progress reports that allow us to see each others’ progress and help if
there are questions or concerns.

3. Strategies for recognizing the contributions of all team members:
a. Git commits and merge requests
b. Progress reports
c. Meeting summaries

Collaboration and Inclusion

1. Describe the skills, expertise, and unique perspectives each team member
brings to the team.

a. Alix Noble: Experienced with front end and back end development and
with unit testing in Java and JavaScript. Some experience with database
management and web development.

b. Andrew Sand: Experienced with C and low-level development.
Additionally is knowledgeable and has experience with frontend web
development. Has experience maintaining documentation for
development teams.

c. James Joseph: Experienced with both web development and
cybersecurity. Can bring a security perspective along with their
experience in programming to develop the application in a way that will
keep users and the university protected. On top of that, they have
experience with reverse engineering and low-level programming, so they
will have a good understanding of what a program aims to do.

sdmay25-23 - Design Document 48



d. Owen Sauser: Experienced with Java, C, C#, and VBA. Has experience in
IT and cybersecurity. His current job is translating a company’s software
from VBA to C#, so he has experience working with other peoples’ code
and making modifications if necessary.

e. Samuel Lickteig: Experienced with C code and web development, as well
as common mistakes a beginner may make. Also have experience in
backend development.

2. Strategies for encouraging and supporting contributions and ideas from all team
members:

Make sure each team member has a chance to voice their opinions on
each issue, even if a majority already believe we should address it one
way.

3. Procedures for identifying and resolving collaboration or inclusion issues (e.g.,
how will a team member inform the team that the team environment is
obstructing their opportunity or ability to contribute?)

They can send a message in the Discord group chat, or if they do not feel
comfortable with that they can go through the senior design instructors or
our advisor if needed.

Goal-Setting, Planning, and Execution

1. Team goals for this semester:
a. Improve upon the initial design and gain a better understanding of the C

programming language along with its patterns/anti-patterns.
b. Improve the security of the initial design.
c. Create a final product that can be beneficially used in its intended

environment.
2. Strategies for planning and assigning individual and team work:

a. As a group we will try to assign equal amounts of work to each team
member such that each of their tasks is best suited for their skillset.

b. If any task is larger than the others, this should be communicated and the
timeline can be adjusted accordingly.

3. Strategies for keeping on task:
Each team member will report on their progress at the weekly team
meeting. If a team member is concerned about keeping up with their
work, they can bring it up at a team meeting and the team can find a
strategy to move forward.

sdmay25-23 - Design Document 49



Consequences for Not Adhering to Team Contract

1. How will you handle infractions of any of the obligations of this team contract?
Collectively talk to the member who made the infraction to see why the
infraction was made and discuss what can be done to prevent further
infractions.

2. What will your team do if the infractions continue?
Communicate with the senior design course instructors and/or our project
advisor to determine a course of action and what can be done in the
situation.

a) I participated in formulating the standards, roles, and procedures as stated in
this contract.

b) I understand that I am obligated to abide by these terms and conditions.
c) I understand that if I do not abide by these terms and conditions, I will suffer the

consequences as stated in this contract.

1) James Joseph DATE 9/16/2024

2) Samuel Lickteig DATE 9/16/2024

3) Alix Noble DATE 9/16/2024

4) Owen Sauser DATE 9/16/2024

5) Andrew Sand DATE 9/16/2024

sdmay25-23 - Design Document 50


